import tensorflow as tf
import os
import pathlib
import numpy as np
import zipfile
import matplotlib.pyplot as plt
from PIL import Image
import cv2
from object_detection.utils import ops as utils_ops
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
import time
# 내 로컬에 설치된 레이블 파일을, 인덱스와 연결시킨다.
PATH_TO_LABELS = 'C:\\Users\\405\\Documents\\TensorFlow\\models\\research\\object_detection\\data\\mscoco_label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS)
# 모델 로드하는 함수.
# 위의 사이트에서 모델을 가져올수있다.
# /20200711/efficientdet_d0_coco17_tpu-32.tar.gz
# Download and extract model
def download_model(model_name, model_date):
model_file = model_name + '.tar.gz'
model_dir = tf.keras.utils.get_file(fname=model_name,
origin=base_url + model_date + '/' + model_file,
untar=True)
return str(model_dir)
MODEL_DATE = '20200711'
MODEL_NAME = '/20200711/centernet_resnet50_v2_512x512_coco17_tpu-8.tar.gz'
PATH_TO_MODEL_DIR = download_model(MODEL_NAME, MODEL_DATE)
def load_model(model_dir) :
model_full_dir = model_dir + "/saved_model"
# Load saved model and build the detection function
detection_model = tf.saved_model.load(model_full_dir)
return detection_model
detection_model = load_model(PATH_TO_MODEL_DIR)
def show_inference(detection_model, image_np) :
# The input needs to be a tensor, convert it using `tf.convert_to_tensor`.
input_tensor = tf.convert_to_tensor(image_np)
# The model expects a batch of images, so add an axis with `tf.newaxis`.
input_tensor = input_tensor[tf.newaxis, ...]
# input_tensor = np.expand_dims(image_np, 0)
detections = detection_model(input_tensor)
# print(detections)
# All outputs are batches tensors.
# Convert to numpy arrays, and take index [0] to remove the batch dimension.
# We're only interested in the first num_detections.
num_detections = int(detections.pop('num_detections'))
detections = {key: value[0, :num_detections].numpy()
for key, value in detections.items()}
detections['num_detections'] = num_detections
# detection_classes should be ints.
detections['detection_classes'] = detections['detection_classes'].astype(np.int64)
print(detections)
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections,
detections['detection_boxes'],
detections['detection_classes'],
detections['detection_scores'],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.30,
agnostic_mode=False)
cv2.imshow( 'result' , image_np_with_detections)
def save_inference(detection_model, image_np, video_writer):
# The input needs to be a tensor, convert it using `tf.convert_to_tensor`.
input_tensor = tf.convert_to_tensor(image_np)
# The model expects a batch of images, so add an axis with `tf.newaxis`.
input_tensor = input_tensor[tf.newaxis, ...]
# input_tensor = np.expand_dims(image_np, 0)
detections = detection_model(input_tensor)
# print(detections)
# All outputs are batches tensors.
# Convert to numpy arrays, and take index [0] to remove the batch dimension.
# We're only interested in the first num_detections.
num_detections = int(detections.pop('num_detections'))
detections = {key: value[0, :num_detections].numpy()
for key, value in detections.items()}
detections['num_detections'] = num_detections
# detection_classes should be ints.
detections['detection_classes'] = detections['detection_classes'].astype(np.int64)
print(detections)
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections,
detections['detection_boxes'],
detections['detection_classes'],
detections['detection_scores'],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.30,
agnostic_mode=False)
video_writer.write(image_np_with_detections)
# 비디오를 실행하는 코드
cap = cv2.VideoCapture('data/video.mp4')
if cap.isOpened() == False:
print('비디오 실행 에러')
else :
frame_width = int( cap.get(3) )
frame_height = int( cap.get(4) )
out = cv2.VideoWriter('data/output.avi',
cv2.VideoWriter_fourcc('M','J','P',"G") ,
20,
(frame_width,frame_height) )
# 비디오 캡쳐에서, 이미지를 1장씩 가져온다.
# 이 1장의 이미지를, 오브젝트 디텍션 한다.
while cap.isOpened() :
ret, frame = cap.read()
if ret == True:
# frame 이 이미지에 대한 넘파이 어레이 이므로
# 이 frame 을 오브젝트 디텍션 한다.
# 학습용으로, 동영상으로 저장하는 코드롤
# 수정하세요.
start_time = time.time()
# save_inference(detection_model, frame, out)
# 동영상을 실시간으로 화면에서 디텍팅하는것
show_inference(detection_model, frame)
end_time = time.time()
print('연산에 걸린 시간', str(end_time-start_time))
if cv2.waitKey(27) & 0xFF == 27:
break
else :
break
cap.release()
out.release()
cv2.destroyAllWindows()
반응형
'Tensorflow' 카테고리의 다른 글
[object detection] 구글 코랩에서 실행하기 (0) | 2021.12.30 |
---|---|
[object detection] 동영상 코드 (0) | 2021.12.30 |
[object detection] 모델 로드하는 방법 (0) | 2021.12.30 |
[object detection] opencv와 텐서플로우의 오브젝트 디텍션 api를 혼합해서, vscode에서 이미지가 제대로 나오도록 하는 방법 (0) | 2021.12.29 |
[object detection] plot_object_detection_saved_model 샘플코드 (0) | 2021.12.29 |