Decision Tree
계속하여 이것인지 저것인지 결정한다.
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X = scaler.fit_transform(X)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=3)
# 모델링
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(random_state=3)
classifier.fit(X_train, y_train)
DecisionTreeClassifier(random_state=3)
y_pred = classifier.predict(X_test)
from sklearn.metrics import confusion_matrix, accuracy_score
cm = confusion_matrix(y_test, y_pred)
cm
from sklearn.metrics import confusion_matrix, accuracy_score
cm = confusion_matrix(y_test, y_pred)
cm
array([[56, 9],
[10, 25]], dtype=int64)
accuracy_score(y_test, y_pred)
0.81

반응형
'AI 이론 > Classification (supervised)' 카테고리의 다른 글
[머신러닝] Naive Bayes (0) | 2021.11.26 |
---|---|
Stopwords (불용어) (0) | 2021.11.26 |
[머신러닝] Support Vector Machine (SVM), sklearn.svm.SVC (0) | 2021.11.24 |
[머신러닝] K-Nearest Neighbor (K-NN) (0) | 2021.11.24 |
[분류 러닝] 성능 측정 => Confusion Matrix (0) | 2021.11.24 |